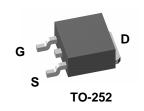
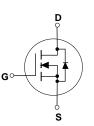
FAIRCHILD SEMICONDUCTOR

FDD5612 60V N-Channel PowerTrench[®] MOSFET


General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{DS(ON)}$ specifications. The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

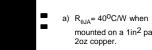
- 18 A, 60 V. $R_{DS(ON)} = 55 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 64 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Optimized for use in high frequency DC/DC converters.
- Low gade charge.
- Very fast switching.

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		±20	V
ID	Drain Current – Continuous	(Note 1)	18	A
		(Note 1a)	5.4	
	Drain Current – Pulsed		100	
P _D	Maximum Power Dissipation	(Note 1)	42	W
		(Note 1a)	3.8	
		(Note 1b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

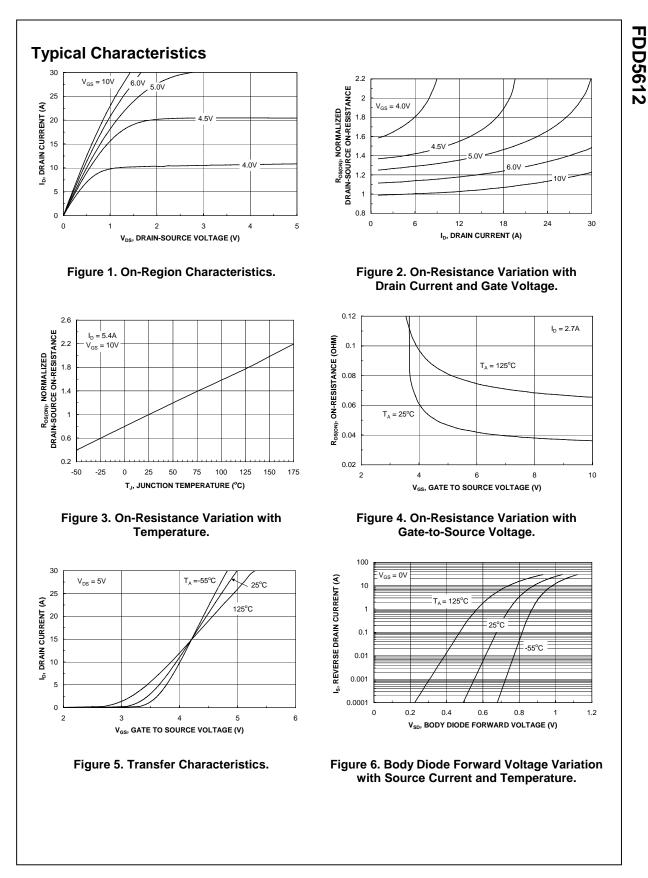
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	3.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
		(Note 1b)	96	

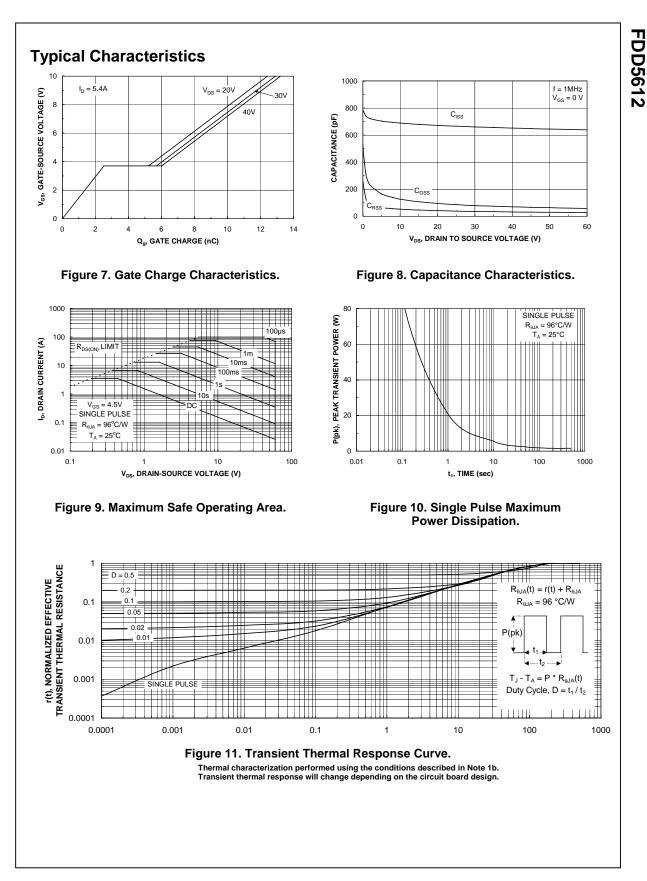

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD5612	FDD5612	13"	16mm	2500 units

©2001 Fairchild Semiconductor Corporation


FDD5612

W _{DSS} AR IAR Off Charac BV _{DSS} ΔT _J C IDSS Z IGSSF C	rce Avalanche Ratings (Note Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current Cteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward	1) $V_{DD} = 30 \text{ V}, I_D = 5.4 \text{ A}$ $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$	60	62	90 5.4	mJ A V
W _{DSS} I _{AR} I Off Charac BV _{DSS} C ΔT _J C I _{DSS} Z I _{GSSF} C	Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current Cteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$V_{DD} = 30 \text{ V}, \qquad I_D = 5.4 \text{ A}$ $V_{GS} = 0 \text{ V}, \qquad I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ Referenced to } 25^\circ\text{C}$	60	62		A
I _{AR} I Off Charac BV _{DSS} C Δ <u>BV_{DSS}</u> E ΔT _J C I _{DSS} Z I _{GSSF} G	Maximum Drain-Source Avalanche Current Cteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	60	62	5.4	
BV _{DSS} C Δ <u>BV_{DSS}</u> B ΔT _J C I _{DSS} Z I _{GSSF} C	Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	60	62		V
BV _{DSS} C Δ <u>BV_{DSS}</u> B ΔT _J C I _{DSS} Z I _{GSSF} C	Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	60	62		V
Δ <u>BV_{DSS}</u> ΔT _J L _{DSS} L _{GSSF} B	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		62		
IDSS Z	8	$V_{DS} = 48 V$, $V_{GS} = 0 V$				mV/°C
	Gate-Body Leakage, Forward				1	μA
		$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V} \qquad V_{DS} = 0 \text{ V}$			-100	nA
On Charac	Cteristics (Note 2)			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	2.4	3	V
	Gate Threshold Voltage	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-6		mV/°C
= = (=)	Static Drain–Source Dn–Resistance	$ \begin{array}{ll} V_{GS} = 10 \; V, & I_D = 5.4 \; A \\ V_{GS} = 6 \; V, & I_D = 5 \; A \\ V_{GS} = 10 \; V, \; I_D = 5.4 \; A, \; T_J = 125^\circ C \end{array} $		36 42 64	55 64 103	mΩ
D(on)	Dn–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	20			Α
g _{FS} F	Forward Transconductance	$V_{\text{DS}} = 5 \text{ V}, \qquad I_{\text{D}} = 5.4 \text{ A}$		15		S
Dynamic (Characteristics					
C _{iss} Ir	nput Capacitance	$V_{DS} = 30 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		660		pF
C _{oss} C	Dutput Capacitance	f = 1.0 MHz		79		pF
C _{rss} F	Reverse Transfer Capacitance			36		pF
Switching	Characteristics (Note 2)					
t _{d(on)} T	Furn–On Delay Time	$V_{DD} = 30 V$, $I_D = 1 A$,		8	16	ns
ι	Turn–On Rise Time	$V_{GS} = 10$ V, $R_{GEN} = 6 \Omega$		4	8	ns
r I				24	38	ns
	Гurn–Off Delay Time					
t _{d(off)} T	Furn–Off Delay Time Furn–Off Fall Time			4	8	ns
rd(off) T f T	,	$V_{DS} = 30 V$, $I_D = 5.4 A$,		4 7.5	8 11	ns nC
t _{d(off)} T t _f T Q _g T	Furn–Off Fall Time	$V_{DS} = 30 \text{ V}, \qquad I_D = 5.4 \text{ A},$ $V_{GS} = 10 \text{ V}$		-	-	-
$d_{d(off)}$ T d_{f} T Q_{g} T Q_{gs} G	Furn–Off Fall Time Fotal Gate Charge	, - ,		7.5	-	nC
t _{d(off)} T t _f T Q _g T Q _{gs} G Q _{gd} G	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge	V _{GS} = 10 V		7.5 2.5	-	nC nC
t _{d(off)} T t _f T Q _g T Q _{gs} G Q _{gd} G Drain–Sou	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge Gate–Drain Charge	V _{GS} = 10 V and Maximum Ratings		7.5 2.5	-	nC nC
u(011)	Furn–On Rise Time			4	8	
$t_{d(off)}$ T t_f T Q_g T Q_{gs} G	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge	, - ,		7.5 2.5	-	nC nC
$d_{(off)}$ T f T λ_{g} T λ_{gs} C λ_{gd} C	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge Gate–Drain Charge	V _{GS} = 10 V		7.5 2.5	-	nC nC
id(off) T Gr T Qg T Qgs G Qgd G	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge Gate–Drain Charge	V _{GS} = 10 V		7.5 2.5	-	nC nC
t _{d(off)} T t _f T Q _g T Q _{gs} G Q _{gd} G Drain–Sou	Furn–Off Fall Time Fotal Gate Charge Gate–Source Charge Gate–Drain Charge urce Diode Characteristics	V _{GS} = 10 V and Maximum Ratings		7.5 2.5	11	nC nC nC



Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDD5612 Rev C1(W)

FDD5612 Rev C1(W)

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ PACMAN™ SuperSOT[™]-3 FASTr™ POP™ SuperSOT[™]-6 Bottomless™ GlobalOptoisolator™ CoolFET™ PowerTrench ® SuperSOT[™]-8 CROSSVOLT™ GTO™ QFET™ SyncFET™ TinyLogic™ DenseTrench™ HiSeC™ QS™ UHC™ DOME™ ISOPLANAR™ QT Optoelectronics[™] EcoSPARK™ LittleFET™ Quiet Series[™] UltraFET[®] SILENT SWITCHER ® VCX™ E²CMOS[™] MicroFET™ EnSigna™ SMART START™ MICROWIRE™ FACT™ OPTOLOGIC™ Star* Power™ **OPTOPLANAR™** Stealth™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	• Rev. H1